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ABSTRACT  

The importance of monitoring soil properties is constantly increasing among researchers and policy-makers. In this context, 

it is imperative to identify cost effective and reliable strategies for soil mapping compared to the costlier traditional 

solutions. A wide range of tools are becoming available that enable better utilization of Earth Observation capabilities to 

monitor the soil ecosystem. This work is an effort of assessing the potential of Sentinel-2 imagery data for mapping Soil 

Organic Matter (SOM) contents and investigating the possibilities of its enhancement through ASTER derived information. 

The rural area around the lake Zazari, located in the Western Macedonia district of Greece, was chosen as study area. 

Initially, pixel-wise vegetation indices (NDVI and NBR2) were calculated, utilizing a local version of the CEOS Open 

Data Cube for masking Sentinel-2 bare soil pixels extending a three-year period (2017–2019). The generated mask was 

used to extract soil spectral signatures at the image level over selected 100 field samples. The resulting time series was 

expanded through the conjunction of ASTER Thermal InfraRed bands by matching the exact data acquisition dates of two 

platforms. 

The conclusive part of the work contains the application of regression modelling to effectively assess soil variables. The 

local Partial Least Square regression algorithm was chosen, due to its characteristics of performing inherently local 

predictions. Five-fold cross-validation technique was used for reporting the models’ accuracy, which was assessed through 

R2 coefficient, RPIQ ratio and RMSE. The model estimated SOM values among a synthetic bare soil composite image that 

was acquired over study area’s agricultural fields. Two models were trained and compared; one over Sentinel-2 imagery 

bands that were used as the predictor variables’ set and a second over an expanded predictor variables’ set, including 

ASTER thermal bands. The results signified evidence of accuracy increase of SOM content assessment, through 

spaceborne imagery analysis. 
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1. INTRODUCTION  

Soil is the most important carbon sink after oceans, playing a crucial role in decelerating climate change (Ruddiman, 2003; 

Paustian, et al., 2016). Its functionality is dependent on a variety of organisms that are part of soil, constituting it an 

essential component of the planet’s biodiversity. Overpopulation strongly affects soil resources sustainability, stimulating 

awareness for their finiteness (Hartemink & McBratney, 2008) leading to strong concerns about Earths carrying capacity 

(UNEP, 2013) and soil viability through human exploitation (F.A.O, 2015). 
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There is an increasing global concern about soil conservation according to (Hartemink & McBratney, 2008) that brings 

soils back to the global agenda. This rising concern has led to the introduction of a constantly expanding set of soil policies 

and regulations about soil preservation and restoration around the world regarding the constant soil degradation and 

decrease of organic carbon in topsoils (Ramesh, et al., 2019). The induced frameworks’ main objective is the effective soil 

management and protection. According to Common Agricultural Policy, measures such as eco-schemes should reward 

farmers for their performance regarding the environment and climate, by storing and managing soil’s carbon and by 

reducing emissions through improvement nutrient management (European Comission, 2019). The existing global data sets 

are out of date or restricted to regional areas. As a result, there is an apparent requirement for the development of a new 

global database, or upgrade of the existing ones, that contains accurate and up to date spatially referenced soil information, 

addressed to scientists, policy makers and stakeholders in general. In this view, reflectance spectroscopy at the remote 

sensing scale can play a crucial role in populating the desired databases, while it have been proven to be vigorous 

approaches for the quantitative determination and modelling of a variety of soil properties, including among others the 

topsoil mineralogical composition such as soil organic carbon (SOC) concentration, textural composition, iron or carbonate 

content, etc., and physical attributes (Ben-Dor, et al., 2009; Angelopoulou, et al., 2019). 

The typical techniques for the determination of topsoil SOC can be time consuming and cost demanding, thus 

spectroscopical analysis in the visible and near infrared range (VNIR) and shortwave infrared (SWIR), 400–2500 nm, has 

proven to be an efficient solution to the aforementioned obstacles. The VNIR spectral signatures that can be extracted in 

situ or in laboratory enable the instant mining of information regarding key soil properties. A variety of soil properties 

extending from physical to chemical and biological (such as Soil Organic Carbon, pH, nitrogen among others) can be 

estimated with low relative-error tolerance through this technique. The VNIR-SWIR analysis trend led to the development 

of large spectral libraries containing a vast amount of information about soil variables (Tziolas, et al., 2019). The extraction 

of the desired soil information from spectra-based datasets needs careful treatment, since soil is a multilayered mixture of 

variables. The successful completion of this procedure enables the application of predictive techniques for an accurate 

estimation of soil features. 

The thermal infrared (TIR) region (8000–11500 nm) may provide useful information regarding the composition and 

classification of soil particles, since the presence of vibrational frequencies of silicate and carbonate molecules, elicit 

differences in the spectral emissivity of soils (Sawut, et al., 2014; Rubio, et al., 1997). In this context, the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) that is equipped with a 5 band Thermal InfraRed 

sensing instrument with spatial resolution of 90m, can support the spaceborne soil spectroscopy. 

The key objective of this work is to examine the feasibility of estimating Soil Organic Matter concentration, around the 

rural area of lake Zazari, using information derived from Sentinel-2 VNIR-SWIR spectral range and ASTER TIR bands, 

under the hypothesis that TIR spectroscopy can lead to higher accuracy estimations of combined together . 

2. MATERIALS AND METHODS 

1.1 2.1 Soil sampling for local spectral library development 

The rural area around the lake Zazari, that is located in the north-western part of the Central Macedonia district of Greece, 

was selected as the study area. Lake Zazari is part of a wider lake complex constituted by lakes Vegoritida, Petron and 

Chimadites. The neighboring area is composed mainly by fertile agricultural fields mostly cultivated with corn and 

potatoes. Soil samples were collected through two concrete field campaigns that took place at early September of 2018 

and 2019, from a group of field experts. At this period, the fields of the study area were mostly cultivated while high levels 

of vegetation were observed. The data collection points were chosen after thorough study of recent (i.e. immediately prior 

to the field visit) spaceborne imagery of the area, and identification of bare soil fields or fields with low vegetation. A local 

Soil Spectral Library (SSL) consisting of 100 samples was assembled by pooling together data from topsoil samplings (0–

30 cm) collected from different fields, under a thorough soil sampling procedure. 
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Figure 1. Study area and sampling points’ spatial distribution 

The samples, after their collection, were air-dried, crushed and sieved resulting to fine earth samples. Stones and non-soil 

material were removed. The powdered samples were sifted, keeping particles with caliber less than 2 millimeters. These 

samples were split into two equal parts. The first part was used to assess the SOM concentration, while the second one was 

used for soil spectra analysis. 

The spectroscopic analysis was carried out according to the protocol proposed in (Ben Dor, et al., 2015). The spectral 

measurement range of the equipment used for spectral signature extraction (PSR+3500 spectrometer from Spectral 

Evolution) is 350 to 2500nm. For the internal calibration, two different sandy soil samples (Willy Bay and Lucky Bay) 

with known characteristics and spectral signatures were used. The pulped samples were deposited inside a totally 

transparent container and placed inside a dark box. The reflectance for each sample was measured three times and the 

average value of each spectral band was calculated and assigned as the measured value. The calibration procedure was 

performed after the completion of every five soil samples measurements (Kopačková & Ben-Dor, 2016). 

 

Figure 2 - Laboratorial spectral signatures and spectral reflectance –Median (solid line), first quartile (dotted line) and third 

quartile (dashed line) of absorbance and percentage of reflectance of sampling set. 
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1.2 2.2 Laboratorial analysis 

The soil property analysis was performed by the certified chemical laboratory of the interBalkan Environment Center (I-

BEC). The SOM was measured with the application of Walkley-Black method (Heanes, 1984). The key statistical measures 

are presented in Table 1 - SOM laboratory analyses key statistics. 

Table 1 - SOM laboratory analyses key statistics 

Property Min Q25 Median Mean Q75 Max SD Skewness Kurtosis 

SOM [%] 0.9 1.73 5.55 4.69 6.98 8.66 2.57 -0.11 -1.63 

Most soils in the studied area are characterized by moderate or higher SOM content for croplands. The results show low 

skewness indicating the absence of outliers, thus there do not exist instances with relatively high SOM values. Since the 

absolute difference between mean value and median is relatively small, the distribution curve is rather symmetrical, with 

high variability, suitable for statistical modeling of hyperspectral products. 

 

Figure 3 - Histogram and boxplot of SOM concentration 

1.3 2.3 Spaceborne imagery acquisition and preprocessing 

A three year time series (starting from January 2017, until December of 2019) of Sentinel-2 L2 corrected images covering 

the surrounding area of Lake Zazari were obtained from the Copernicus Sci-Hub platform. Ιn order to determine the 

agricultural sub-areas of the study area, the normalized difference vegetation index (NDVI) and the normalized burn ratio 

2 (NBR2) vegetation indices were calculated where  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
, 𝑁𝐵𝑅2 =

(𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)

(𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2)
 

The areas that their datapoints had NDVI≥0.25 and NBR2≥0.075 (Demattê, et al., 2018) were classified as bare agricultural 

soil, extending to more than 400 distinct agricultural fields. Correlation analysis was conducted between spectral bands of 

Sentinel-2 imagery and resampled laboratory signatures. As shown on main diagonal of the upper right quarter-block of 

Figure 4, there is strong correlation between laboratory spectra and Sentinel-2 imagery, thus the development of robust 

statistical modeling can be conducted. 
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Figure 4 – Correlation between S2 (horizontal) spectral bands and resampled laboratorial spectral bands (vertical) 

ASTER Level-2 corrected images from the nearest date to the field campaign were also collected from NASA Land 

Processes Distributed Active Archive Center (LP DAAC). The mask filtering procedure was conducted through the 

collation of Sentinel-2 products and ASTER of the same date resulting to the extraction of bare soil of the studied area. 

The conclusive part of data acquisition contains the collection of Sentinel-2 and ASTER spectral signatures of the sampling 

dataset for a time frame of 3-years depth. NDVI and NBR-2 filtering was applied, through a local version of the Committee 

on Earth Observation Satellites Open Data Cube (Killough, 2018), on top of cloud filtering with the same thresholds as 

previous, while for cloud coverage filter, the value of 10% was selected as maximum tolerated. 

1.4 2.4 Model fitting 

For the estimation of the depended variable, namely the chemical attribute SOM, a modified version of Partial Least Square 

Algorithm was applied, through pls package of the Caret package wrapper of R. This Local PLS version follows the 

memory-based learning approach and develops a single model for each unknown pattern individually using only its 

neighboring (in terms of spatial and spectral distance) patterns. The experimentation set-up involved a 5-fold cross-

validation procedure, where each fold was successively used as test set and the rest as calibration. The hyperparameters of 

the models where determined through an internal 5-fold cross-validation procedure within each calibration set (Tsakiridis, 

et al., 2017). The accuracy metrics were calculated as the average results in the independent set across all folds. The fitted 

model evaluation was assessed through the calculation of the values of the following measures, between the estimated 

values �̂� and the independent test set: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)𝑖

2

∑ (𝑦𝑖 − �̅�)𝑖
2 , 𝑅𝑀𝑆𝐸 = √

∑ (𝑦𝑖 − 𝑦�̂�)𝑖
2

𝑁
 

𝑅𝑃𝐼𝑄 =
𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑅𝑀𝑆𝐸
 

Where, 𝑦 is the laboratory measured values, 𝑁 the total number of samples consisting the independent set, �̅� is the average 

value of the independent set, and 𝑦�̂� is the predicted property through the fitted model. 
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3. RESULTS 

Local PLS modeling was fitted first to the dataset containing only Sentinel-2 bands while the second part of the modeling 

was to conjugate the ASTER Thermal InfraRed bands by matching the exact data acquisition dates of the two platforms. 

The performance of the two models is assessed through the calculation of the average of the above metrics, and is presented 

in Table 2  

Table 2. Local PLS results for the independent test regression modeling 

 Dataset R2 RMSE RPIQ 

Sentinel-2 bands 0.5274 1.8545 1.2987 

Sentinel-2 bands and ASTER TIR Bands 0.6478 1.6492 1.8243 

 

  

Figure 5 – Linear fitting of validation set of Local PLS model for the conjugated dataset including Sentinel-2 and ASTER 

bands. 

The above values signify that the model fitted to the extended dataset leads to increased accuracy, compared to the Local 

PLS model that was fitted only to Sentinel-2 bands. There is indication that ASTER products can enhance the use of 

Sentinel-2 imagery for SOM assessment through the conjugation of TIR bands. The TIR region responded in an 

encouraging way suggesting further investigation of its potential of assessing a wider variety of chemical soil properties.  

 

Figure 6. Soil Organic Matter concentration, as predicted from Local PLS modeling. Spectral signatures’ source: Sentinel-2 

L2A product with sensing date 2018-09-04, and ASTER atmospherically corrected with sensing date 2018-09-09 
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4. CONCLUSION

The proposed approach which is based on the composite image sourced from heterogeneous satellite sources, overcomes 

the hindrances of utilizing spectroscopy to evaluate soil variables from a single satellite image due to fractional vegetation 

cover by exploiting the seasonal variation. Therefore, it could greatly improve soil mapping and pave the way for the 

establishment of an innovative and efficient monitoring system of soil variables. According to (Nanni & Demattê, 2016), 

it is possible to estimate clay, Fe2O3, and TiO2 contents with stepwise models developed from satellite spectral data derived 

from Landsat-5 Thematic Mapper, since the performed regression modeling returned R2 value as high as 0.72. The above 

finding emboldens the application of the proposed methodology on an extended soil attributes set. 

 For instance, the continuous spatial and temporal monitoring of the SOM can facilitate the reporting of organic carbon 

content in agricultural soils that is crucial from the environmental perspective, as well as for economic terms to ensure that 

the beneficiaries of the Common Agricultural Policy respect their cross-compliance obligations for the period post-2020. 

An integrated in-situ and spaceborne framework as proposed in the DIONE project would be of great benefit for 

progressing an earth observation based soil monitoring system. 

Overall, this study is an interdisciplinary work combining Big Data, machine learning and the Greek DC and aims to 

support SDGs, and can be realized to a cluster of other areas of comparable terrestrial ecosystems to solve critical problems 

such as the assessment of topsoil SOM in Greece and even in wider European region. Many adaptations can be explored 

for further development. Different distance metrics can be assessed for the developed models. Furthermore, with the 

significant expansion of the training set, Convolutional Neural Networks could be employed (Tsakiridis, et al., 2020) for 

more precise estimations. 
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